Calculus AB
 3-1
 Extrema on an Interval

Extreme Value Theorem- If f is continuous on $[\mathrm{a}, \mathrm{b}]$, then f has both a minimum and a maximum on the interval.

Critical Point- A point on a graph where the derivative is equal to zero or does not exist.

Theorem- Relative Extrema only occur at critical points.

Find any critical numbers of the function. (pg 169)
12) $g(x)=x^{4}-4 x^{2}$

$$
g^{\prime}(x)=4 x^{3}-8 x
$$

Locate the absolute extrema of the function on the closed interval.

20) $h(x)=-x^{2}+3 x-5$, on $[-2,1]$

Locate the absolute extrema of the function on the closed interval.
61) The formula for the power output P of a battery is $P=V I-R I^{2}$ where V is the electromotive force in volts, R is the resistance, and I is the current. Find the current (measured in amperes) that corresponds to a maximum value of P in a battery for which $V=12$ volts and $R=0.5$ ohms. Assume that a $15-\mathrm{amp}$ fuse bounds the output in the interval for I of $[0,15]$. Could the power output be increased by replacing the $15-\mathrm{amp}$ fuse with a 20 amp fuse?

$$
\begin{aligned}
& P=V I-R I^{2} \\
& P=12 I-0.5 I^{2} \\
& \frac{d P}{d I}=12-1 . I
\end{aligned}
$$

$$
\begin{aligned}
& \text { fuse would not increase power. }
\end{aligned}
$$

Assignment:
Pg. 169
11-35 odd,
39, 41, 43, 54, 57-60

